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Cadmium-113 Nuclear Magnetic Resonance Studies of 
,13Cd(II)-Substituted Human Carbonic Anhydrase B 

Sir: 

Carbonic anhydrases (carbonate hydrolyase EC 4.2.1.1) 
are zinc metalloenzymes found in animals, plants, and certain 
bacteria, which catalyze the reversible hydration of carbon 
dioxide (CO2 + H2O = H C O 3 - + H + ) , the hydrolysis of 
certain esters, and various other reactions.1 Carbonic anhyd­
rases from human erythrocytes (HCA) are monomeric en­
zymes of molecular weight ~29 000, each molecule containing 
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Figure 1. 113Cd FT NMR spectra at 25 0C of 96% isotopically enriched 
113Cd11HCAB in 85% H20/D20 and 25 mM Tris sulfate. Chemical shifts 
(ppm) based on 1.0 M CdSO4 at -2.8 ppm (ref 5a). No proton decoupling 
was employed. pH* values are uncorrected for presence of 15% D2O. 
Exponential multiplication with 7 Hz line broadening was applied to the 
free-induction decays: (A) 5 mM enzyme, pH* 9.7, no inhibitors present, 
12-h accumulation; (B) 7 mM enzyme, pH* 9.2, 2 equivof NaCl added, 
5-h accumulation; (C) above sample, plus 1 equiv of K13 CN (90% isotopic 
enrichment), 10-h accumulation. 

a single equivalent of firmly bound Zn(II) which is required 
for catalytic activity. X-ray crystallographic studies of the 
low-activity (HCAB)2a and high-activity (HCAC)2b isozymes 
reveal the zinc ions near the bottoms of 12-15 A clefts, coor­
dinated to nitrogen atoms from three histidyl side chains in 
distorted tetrahedral geometry, with the fourth coordination 
sites presumably occupied by water molecules or hydroxide 
ions. Kinetic studies on HCA point to the existence of two (or 
more) species per isozyme in acid-base equilibrium having pA"a 

values near 7, with the high-pH forms producing faster hy­
dration rates. The identities of the various active species and 
the detailed mechanisms of their action remain in dispute.3 

Direct observation by NMR of the metal at the active site 
of a metalloenzyme is expected to provide information re­
garding the chemical environment of the active site, free from 
the background interference characteristic of 1H and 13C 
NMR spectra of proteins. Advances in sensitivity of modern 
Fourier transform NMR spectrometers and the use of large 
(15-20 mm o.d.) sample tubes have made it possible to consider 
direct observation of individual atom resonances for millimolar 
enzyme solutions.4 However, 113Cd, with its spin quantum 
number / = '/2, is expected to produce superior NMR spectra 
in a l l3Cd(II)-substituted enzyme over that of 67Zn, with its 
lower gyromagnetic ratio and / = 5/2, with the resultant like­
lihood of quadrupole broadened resonances in the 67Zn(II) 
-enzyme. Furthermore, it has been demonstrated tha t ' 13Cd, 
like many heavy metals, exhibits a large chemical shift range 
(>600 ppm), making it potentially very sensitive to changes 
in the active site environment.5 

Replacement of zinc ions by other divalent metal ions has 
often been used to provide spectroscopic probes of the active 
site of carbonic anhydrase. With the notable exception of 
Co(II), most divalent metal ions fail to restore much catalytic 
activity. Recently, however, it has been shown that Cd(II)-
HCAB is an effective catalyst, at least for the hydrolysis of 
p-nitrophenylacetate, with a pA â value of ~9.1 for the activ­
ity-linked functional group.6 

Figure IA shows the 113Cd NMR spectrum7 at 25 0 C of 4 
mL of ' 13Cd(II)HCAB8 at pH* 9.7 in the absence of mono-
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valent anions or other inhibitors. This spectrum shows a single, 
broad (~300 Hz) line centered at about 228 ppm from aqueous 
Cd(II) at infinite dilution. Under no experimental condition 
at 25 0C have we observed a resonance more narrow than ~250 
Hz for uninhibited "3Cd11HCAB. This is at variance with a 
recent report9 of a rather sharp (28 Hz) resonance centered 
at 146 ppm for"3Cd11HCAB at pH 9.6. Our studies on com­
plexes of Cd(II) with heterocyclic nitrogen ligands result in 
"3Cd resonances in the range 200 to 270 ppm.10 In the pH* 
range 7.3-9.7 we have consistently observed a broad peak of 
~300 Hz or greater line width, generally centered at about 200 
ppm at lower pH* values and about 230 ppm at higher pH* 
values. 

Figure 1B shows the effect of addition of 2 equiv of NaCl. 
The resonance sharpens to ~60 Hz, and the chemical shift 
value is 238.6 ppm. The addition of several more equivalents 
of NaCl has no discernible effect. The effect of a single 
equivalent of NaCl has not yet been determined. Assuming the 
presence of a single, tight Cl - binding site with at least 90% 
occupancy, we calculate a Cl - dissociation constant of 7 X 
10 -4 M or less. With the reported inhibition constant K\~&2 
XlO - 2M for Cd11HCAB,6 it is unlikely that Cl - binds directly 
to Cd(II) under the conditions of Figure IB. There is ample 
evidence for the existence of two strong anion binding 
sites313'1'—one which inhibits enzyme activity, presumably by 
direct metal binding, and an even tighter but noninhibitory 
binding site which is probably within ~4 A of the metal ion. 
The presence of Cl - bound near the metal has apparently af­
fected whatever exchange process is responsible for the peak 
broadening in uninhibited 113Cd11HCAB. 

Any '' 3Cd resonance of line width less than ~45 Hz in the 
proton-coupled ' ' 3Cd11HCAB spectrum must be viewed cau­
tiously considering the presence of five C(2) and C(4) protons2a 

with vicinal Cd-N-C-H spin-coupling constants (10-13 Hz 
in analogous compounds12). 

Figure IC shows the "3Cd11HCAB spectrum after addition 
of 1 equiv of K'3CN (>90% isotopic enrichment, Merck). The 
resonance splits into a doublet centered at 410 ppm with a 
separation JQ&C = 1.060 Hz and line width ~50 Hz. This is the 
largest known cadmium coupling constant and indicates a 
Cd-C bond of lifetime > 10-2 s. Addition of a second equiva­
lent of K13CN produced no further change.13 There has been 
considerable speculation regarding the existence of stable 
pentacoordinate Zn(II) in HCA.14 Considering the larger ionic 
radius of Cd(II), we conclude that there is probably only one 
available binding site for C N - in Zn11HCAB. A large excess 
of 13CN - has not yet been tried on ' 13Cd11HCAB, although 
this was apparently not necessary to produce the pentacoor­
dinate species in Co11HCAB.i4b 

Our experiments to date indicate T\ values of 2-3 s for' 13Cd 
in Cd(II)HCAB based on flip angle optimization. In agree­
ment with a previous report,9 we find that proton decoupling 
leads to a loss of the ' ' 3Cd signal. These results and our dipolar 
T\ and N.O.E. calculations based on five carbon-bound im­
idazole protons at 2.8 A distance from "3Cd(II) in a molecule 
having a rotational correlation time of 10-8 s (and a negative 
gyromagnetic ratio for 113Cd) are consistent with a purely 
dipolar relaxation mechanism. 
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Electron Spin Exchange in Rigid Biradicals 

Sir: 

We have prepared six nitroxyl biradicals in which the extent 
of conformational change is strongly limited by the rigidity of 
the structure connecting the radical groups. These biradicals 
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